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Improving quantitative synthesis to achieve 
generality in ecology

Rebecca Spake    1 , Rose E. O’Dea    2, Shinichi Nakagawa    3, 
C. Patrick Doncaster    4, Masahiro Ryo    5,6, Corey T. Callaghan    7 & 
James M. Bullock    8

Synthesis of primary ecological data is often assumed to achieve a notion 
of ‘generality’, through the quantification of overall effect sizes and 
consistency among studies, and has become a dominant research approach 
in ecology. Unfortunately, ecologists rarely define either the generality of 
their findings, their estimand (the target of estimation) or the population 
of interest. Given that generality is fundamental to science, and the 
urgent need for scientific understanding to curb global scale ecological 
breakdown, loose usage of the term ‘generality’ is problematic. In other 
disciplines, generality is defined as comprising both generalizability—
extending an inference about an estimand from the sample to the 
population—and transferability—the validity of estimand predictions in 
a different sampling unit or population. We review current practice in 
ecological synthesis and demonstrate that, when researchers fail to define 
the assumptions underpinning generalizations and transfers of effect sizes, 
generality often misses its target. We provide guidance for communicating 
nuanced inferences and maximizing the impact of syntheses both within 
and beyond academia. We propose pathways to generality applicable 
to ecological syntheses, including the development of quantitative and 
qualitative criteria with which to license the transfer of estimands from 
both primary and synthetic studies.

Ecologists often seek to extend inferences from their studied systems 
to predict phenomena in different taxonomic, spatial or temporal set-
tings1. Indeed, around 40% of the most cited ecology journals demand 
that submissions are relevant for other species, ecosystems, biomes 
or time periods (Appendix S1 in the Supplementary Information). In 
principle, this is a fair request, to prevent the literature from becom-
ing a descriptive ‘stamp collection’ of case studies2, with inferences 
limited to the sampled population. Ecologists have pursued many 

roads to generalities3,4, including developing mathematical models to 
predict key population parameters5,6, unifying conceptual frameworks 
to predict the importance of different mechanisms in different con-
texts4,7 and coordinating globally distributed experiments to predict 
responses of ecological systems to perturbations8. A further road that 
has gained prominence in ecology over the past 30 years is the use of 
‘quantitative synthesis’ to identify generalities about the strength and 
direction of ecological effects9.
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organize extensive literature using a common measurement scale, to 
identify generalities across taxonomic, spatial or temporal contexts9.

Evidence from rigorous quantitative syntheses is considered to 
represent one of the most methodologically robust sources for testing 
key ecological hypotheses, rejecting or corroborating theories and 
informing environmental decision-making9–11. Concurrently, an insidi-
ous myth persists that the very act of quantitatively synthesizing data 
from diverse studies is enough to warrant claims of generality about 
effect sizes11–13. Syntheses continue to proliferate in ecology10, and are 
often associated with high-impact journals and media attention, for the 
apparently regional or global reach of their inferences14. At the same 
time, however, they can stimulate much scientific debate on biases and 
interpretation14. Here, we argue that current approaches to quantitative 

Quantitative syntheses identify, appraise and combine data from 
individual studies or sites that have measured an effect of interest, typi-
cally via meta-analysis or multilevel modelling10–14 (Box 1). Syntheses 
have been used to answer both basic and applied ecological questions 
by quantifying, for example, the effects of major environmental drivers 
such as climate change on ecological communities, the effectiveness 
of conservation actions, and evaluating the evidence for ecological 
and evolutionary theories9. Central to quantitative synthesis is the 
‘effect size’ estimated for each study, representing the direction and/
or magnitude of an effect, commonly measured using differences 
between categorical group means, or the strengths of association 
between variables. In the absence of theoretical models or distributed 
experiments, effect sizes enable scientists to combine, compare and 

Box 1

Current practices in quantitative synthesis
Two approaches to quantitative synthesis are widely used: (1) 
the meta-analysis of study-level summary statistics (hereafter 
‘meta-analysis’), which requires treatment-level means, standard 
deviations and sample sizes; and (2) full-data analyses that fit 
multilevel (generalized) linear mixed models to raw, site-level 
observations, hereafter ‘full-data analysis’ (see table). In health 
disciplines, full-data analyses are known as ‘individual patient data 
meta-analysis’, and are considered the ‘gold standard’91, owing to 
their potential for resolving issues regarding study-specific designs 
and confounding variation. The use of full-data analyses has also 
surged in ecology, aided by open-science policies that encourage 
or mandate the publication of raw data alongside articles, and 
initiatives that collate raw data (for example, PREDICTS92, BioTime93 
and COMPADRE/COMADRE94,95). While definitions vary within and 
between disciplines—for example, meta-analysis may be considered 
a special case of multilevel modelling96—we use the term ‘synthesis’ 
to encompass both meta-analysis and full-data analysis, as defined in 
the table.
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Two approaches used to synthesize primary studies, represented 
as different fruits, that have measured responses of some 
ecological variable Y to variable X and effect modification by 
variable Z. See table.

Two approaches to the synthesis of primary studies that 
have measured responses of some ecological variable Y, 
such as biodiversity or carbon storage, to variable X, and 
effect modification by variable Z

Meta-analysis Full-data analysis

Input data Study-level summary 
statistics (mean, standard 
deviation, n) compiled 
across multiple studies. 
Primary studies may have 
measured outcomes in 
different units.

Study-level raw data 
compiled across multiple 
studies. Unit of measurement 
must be consistent across 
studies.

Study-level 
effect sizes

Study-level differences 
between categorical 
treatments (for example, 
Hedges’ g or log response 
ratios), or the magnitudes 
of these changes against a 
continuous predictor (for 
example, correlations).

Study-level random slopes 
on the scale of the linear 
predictor.

Statistical 
procedure

Precision-weighting, 
generally using the inverse 
of the sum of study-level 
and between-study 
variance.

Partial pooling, wherein 
group (study) estimates 
are ‘shrunk’ towards the 
population mean as a 
function of the relative 
variance of each estimate.

Estimate of 
overall mean 
effects

Meta-estimate of mean 
effect (ΔY; top left in 
figure).

Fixed-effect estimate (top 
right in figure).

Estimate of 
between-study 
heterogeneity

Heterogeneity statistics, for 
example, I2. Benchmarks 
of I2 of 25, 50 and 75% 
are interpreted as small, 
medium and high, 
respectively.

Concurrent interpretation 
of three parameters: the 
variances of (1) random 
slopes and (2) random 
intercepts, and (3) the 
covariance of intercepts and 
slopes.

Attribution Comparison of subgroup 
mean effects, or 
meta-regression of effect 
sizes on meaningful ‘effect 
modifiers’ or ‘moderators’ 
(Z; bottom left in figure).

The analyst may fit an 
interaction term between X 
and Z, and interrogate the 
marginal effects. Sometimes 
analysts perform post hoc 
analyses of random slopes, 
for example, regression 
on ‘effect modifiers’ or 
‘moderators’ (Z; bottom right 
in figure).
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synthesis often fail to make valid inferences about the generality of 
effect sizes, or allow such inferences to be drawn by readers.

Assessing generality
Any assessment of generality requires two decisions: (1) what type of 
generality we wish to pursue, defined by the particular target context 
(the population or unit of observation of interest); and (2) the estimand 
of interest: the quantity we have estimated from a sample, based on our 
research question, and that we wish to predict in the target context15,16. 
Human behavioural and health disciplines tend to define generality, or 
more formally ‘external validity’, as the extent to which estimands drawn 
from a studied sample can be used to predict the same estimands of a 
broader population or other target contexts. The estimand might be a 
descriptive sample statistic of a variable of interest (for example, mean, 
variance of species richness) or a measure denoting the magnitude 
and/or direction of a particular effect (for example, difference in mean 
species richness of logged and unlogged forest stands) for a specified 
individual unit or population. We focus on the latter in this Review.

By contrast, generality is rarely defined in ecology, with research-
ers often discussing the degree to which study ‘findings’ or ‘results’ 
can be ‘transferred’, ‘extrapolated’, ‘generalized’, ‘applied’ or ‘are rel-
evant’ to other contexts. Figure 1 summarizes two types of generality: 

generalizability and transferability13,17,18. Generalizability concerns the 
validity of extending an inference about an estimand from the sample 
to the sampled population. For example, ecologists might reason-
ably conclude that the mean effect of forest logging on understorey 
vegetation observed in a randomly selected sample of independent 
forest stands in a national park in central Japan represents the mean 
effect across all forest stands in the park. Extending inferences beyond 
the sampled population extends the scope of statistical inference to 
different sampling units or a spatiotemporally different population of 
units. The validity of this extension is termed ‘transferability’18,19. For 
example, one might predict a similar effect of logging to that observed 
in central Japan for a similar forest type in the United Kingdom. The 
validity or bias of this transfer could be defined as the accuracy of an 
estimand in a target context, quantified by the difference between the 
transferred estimand and the ‘true’ estimand.

Ecologists’ statements concerning generality in both primary case 
studies and syntheses often do not use formal definitions of generality 
and, in our experience, usually gloss over the assessments required to 
individuate both the studied context and the target context over which 
to transfer specific estimands of interest. In quantitative synthesis, the 
estimand is the target of estimation by an effect-size metric. A recurrent 
criticism is that combining effect sizes from very different contexts 
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Fig. 1 | Generality, which we use synonymously with external validity, 
comprises the generalizability and transferability of estimands drawn from 
primary and synthetic research. Syntheses collate data from primary studies, 
each of which usually has a well-defined and narrow context relative to the 
context of the synthesis, and these studies are here each represented by a fruit 
of one of several types. Collated, these studies form a reference sample from a 
hypothetical population of studies, which together cover a broader context (here 
of fruits, either implicitly or explicitly defined by the researcher). Generalizability 
concerns the validity of an inference based on a sample that is randomly or 
non-randomly drawn from the target population (left column). Transferability 
concerns the validity of inferences based on a reference sample, when applied 

to either a different target population or unit (target context). Transfer across 
space is shown as an example, to sites in a different spatial location (middle row), 
or an individual target site from a different population (bottom row), which may 
also differ in temporal or taxonomic context to the reference sample. In both 
cases, the synthesized samples and the populations may have well-defined or 
poorly defined contexts. Here, the context of the synthesis is represented by the 
distribution of individual studies (fruits) within three measured or unmeasured 
dimensions of parameter space, for example, edaphic, taxonomic, climatic 
variables (V) that vary depending on context and may influence the outcome of 
a study. In our example, the hypothetical reference and target contexts overlap 
(within the parameter space shaded blue) despite being on different continents.
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(‘mixing apples with oranges’) makes for questionable interpretabil-
ity of overall ecological effects20, leaving us with precise answers to 
vague questions21. We argue that the direction of progress in synthesis 
science needs resetting to enable the valid transfer of estimands in 
ecology. Determining the criteria or conditions that permit transfer to 
a specific target context is a research agenda in its own right. Here, we 
first examine current practice of quantitative synthesis, to understand 
whether and how it can substantiate claims about the generalizability 
or transferability of ecological effect sizes. We then provide guidance 
to enable nuanced inferences about the generalizability and transfer-
ability of estimands. While our focus is on synthetic research, the 
ability of syntheses to make general claims will depend on generality 
being precisely defined within primary studies, and therefore our 
recommendations extend to primary studies too. Finally, we outline 
a research agenda to guide both fundamental and applied ecological 
research towards valid generalizations and transfers.

Current practices in quantitative synthesis do not 
support generality
Quantitative syntheses, whether by meta-analysis or full-data analysis 
(Box 1), generally involve some or all of three steps: (1) the estimation of 
study-level effect sizes and an overall mean effect size; (2) estimation of 
heterogeneity statistics that describe differences in study-level effect 
sizes; and (3) attribution of effect-size heterogeneity to meaningful 
predictors (known as moderators), intended to provide a more nuanced 
configurative account of the overall effect. In syntheses, the estimand 
of interest is the effect size. Here, we review these steps to demonstrate 
how current practices often do not support valid inferences about the 
generalizability and transferability of effect sizes.

Step 1: Estimating mean effects across a sample of primary 
studies
Meta-analyses of primary studies typically synthesize study-level dif-
ferences between categorical treatments (for example, Hedges’ g or 
log response ratio LR), or the magnitudes of these changes against 
a continuous predictor (for example, Pearson’s z), whereas full-data 
analyses are performed with raw, site-level observations using (gen-
eralized) linear mixed models. Standard statistical procedures are 
used to estimate a measure of central tendency in effect sizes, which 
corresponds to a weighted mean effect (meta-analysis) or a fixed effect 
estimated by the partial pooling of random slopes (full-data analysis). 
Weighting and shrinkage increase the precision of model parameters 
for meta-analysis and full-data analysis, respectively22,23.

Implicitly or explicitly, these mean-effect-size estimates are gen-
eralized by the researcher from the sample of primary studies to some 
hypothetical population of studies, which is rarely defined. In the 
absence of its characterization, it is typically implied or assumed that 
the target population is either (1) exactly the study sample (in which 
case generalization is unnecessary) or (2) the whole population from 
which the study observations have been randomly and independently 
sampled (in which case generalization is valid). In both cases, it is 
assumed that the target population is implicitly defined by the inclu-
sion and exclusion criteria of the study19. The validity of generaliza-
tion depends on representativeness (increased by unbiased random 
sampling) and sample size. Often syntheses claim to be ‘global’ (Sup-
plementary Fig. 1), implying that inference can be generalized to some 
global population of studies. Such inferences are criticized when study 
contexts do not comprise a random and representative sample of pos-
sible contexts across a hypothetically ‘global’ population, owing to 
taxonomic and geographic biases24. Samples are further distorted by 
language25 and publication26 biases (for example file-drawer effects27). 
Moreover, mean estimates can be strongly skewed by outlying effects28.

With at least a qualitative evaluation of possible sources of bias, 
such syntheses nevertheless have value. Indeed, as the authors of one 
study29 argue, “it is not representativeness of the study subjects that 

enhances the generalisation, it is knowledge of specific conditions and 
an understanding of mechanism that makes for a proper generalisa-
tion”. Accordingly, the main issue is failure to characterize the reference 
or target contexts, even if they are narrow in scope (for example, a lim-
ited geographic area or number of taxonomic groups studied). Rather 
than representativeness, a greater cause for concern is the biases 
introduced through the uncritical application of synthesis methods, 
originally developed for orthogonal medical and social studies30,31. 
For example, in serving to increase the precision of estimated mean 
effects, the weighting and shrinkage imposed by under-parameterized 
meta-analytic and multilevel models can amplify any within-study 
biases30. This is owing to non-random variation in scale across stud-
ies, yielding precise yet inaccurate effect-size estimates30. Ecological 
studies employ a range of study and analytical designs30,32 variously 
factoring confounding variability in or out. A meta-analyst typically 
equates the different covariate configurations and study designs of 
primary studies when estimating effect sizes from treatment group 
means, and so introduces differing degrees of omitted variable bias 
and internal validity among the included primary studies.

Step 2: Estimating heterogeneity
The mean effects reported by a synthesis cannot be properly inter-
preted without an analysis of heterogeneity, or inconsistency, among 
effect sizes33. For meta-analysis, the I2 statistic represents the percent-
age of variance between effect sizes that cannot be attributed to sam-
pling error34. For full-data analyses, heterogeneity can be assessed 
using measures of random-slope variance35,36. Reviews have found that 
a large proportion of meta-analyses in ecology and evolution do not 
report heterogeneity statistics35,37 and/or present aggregated mean 
effects that can conceal variability even within relatively homogeneous 
subgroups38. Yet heterogeneity is critical to interpreting mean effects34. 
For example, consider that a mean effect of zero biodiversity change 
with land use change can be achieved under two circumstances: (1) 
effect sizes are all zero (homogenous; low between-study variance); or 
(2) effect sizes are very different but centred on zero (heterogeneous; 
high between-study variance), with high heterogeneity signalling a 
need to explore the nature or drivers of the variation. It is important to 
present the range and variability of effect sizes alongside main effect 
interpretation, using, for example, orchard plots36 (for instance, as in 
refs. 39,40) and density plots (as in refs. 38,41).

Ecological syntheses that estimate between-study variability often 
report very high heterogeneity (I2 values ~90%)42 and random-slope 
variances43. Average effect sizes with high heterogeneity have question-
able meaning. While meta-analysis of a set of similar experiments on 
a single species has a clear interpretation, interpreting a meta-effect 
across species and biogeographic contexts may be questionable44. 
Even Glass, an early proponent of meta‐analysis45, suggested that 
while meta-analysis is able to provide a “big fact”, it cannot give more 
“sophisticated answers; they aren’t there”46. The key point here is that 
while average effects are often assumed to yield generalities, aver-
ages of highly heterogenous effect sizes are neither generalizable nor 
transferable by themselves.

Step 3: Attributing variation to meaningful predictors
The next, and arguably the most useful, step is to attribute effect-size 
variation to meaningful predictors, and reach beyond the scope of 
individual studies to evaluate what Cooper47 called “review-generated 
evidence”. In meta-analysis, this is achieved by subgroup analyses that 
estimate and compare mean effects across meaningful groupings of 
studies, and the meta-regression of effect sizes against ‘effect modi-
fiers’, or ‘moderators’. In full-data analyses, attribution is either done by 
fitting more complex models that contain interaction terms between 
study-level or site-level covariates (for example, that comprise an envi-
ronmental gradient), or post hoc, through regressions of random slopes 
on effect modifiers48.
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Attribution attempts to make inferences about the degree of transfer-
ability of an effect size, with moderators specifying the conditions under 
which effects can be transferred. No single reference study or sample of 
studies will transfer perfectly to another target context, due to inherent 
contextual and study-design differences. Attribution should force us 
to define the populations to which we wish to transfer our effect sizes 
(subgroups of studies, levels of predictors in a meta-regression). Target 
contexts are typically coarsely parameterized, however, and researchers 

usually estimate overall effects across broad and heterogeneous sub-
groupings. Obviously, subgrouping and model complexity are limited by 
sample size, and data availability/reporting by primary studies49. Attribu-
tion is prone to bias and spurious effect modification when there is covari-
ation amongst study-design attributes (for example, replication), random 
effects and effect modifiers30. Because the effect modifiers that implicitly 
represent target contexts are often poorly characterized or heterogene-
ous, this limits the transferability of meta-estimates to any single setting11.

Box 2
Example CoG statement for synthesis of plantation thinning effects on broadleaved sapling abundance

Summary of study: A recent study55 synthesized the effects of 
stand-level forest management interventions on biodiversity 
in Japan. Here, we present effect sizes representing the effect 
of plantation thinning on broadleaved tree regeneration, for 
plantations dominated by either Cryptomeria japonica (sugi) or 
Chamaecyparis obtusa (hinoki) distributed across Japan. For each 
comparison, a log response ratio was estimated to represent 
the proportionate difference in broadleaved sapling abundance 
between replicates of thinned and unthinned stands. Effect sizes 
were meta-regressed on thinning intensity, measured as the percent 
of stand volume removed. A positive effect of stand thinning on 
sapling abundance increased with thinning intensity (left panel 
in figure). Further details are available in Appendix S2 in the 
Supplementary Information.

Constraints on generality (CoG): Reductions in sugi and hinoki 
stand volumes by greater than 30% are likely to increase sapling 
abundance in young, even-aged plantations between 20 and 41 
years old, located across warm-temperate Japan (middle and right 
panels in figure). For these closed-canopy forests, the positive effect 
of thinning on sapling abundance should increase with thinning 
intensity, up to 60%. Further studies are required to establish whether 
positive effects remain or indeed become stronger after 60%, 
because planted trees might have indirect effects on broadleaved 
regeneration: clear-cutting (100% reductions) can lead to dominance 
of herbs and/or shrubs, which inhibit the regeneration of broadleaved 

tree species57. In the studies collated, stands had been surveyed 
between two and seven years after line or selective thinning. Positive 
effects may not be evident after longer periods, as recruitment to 
older age classes may not persist following rapid canopy closure, 
and repeated thinning may be required to ensure the survival of 
regenerated seedlings.

Positive effects of thinning on broadleaved tree regeneration 
should hold for plantations with intact broadleaved seed banks, 
which are major sources of seedlings recruited after disturbance 
in conifer plantations58, and for sites located in highly forested 
landscapes. We caution against transferring the positive effect of 
thinning to landscapes with little forest cover, because recruitment 
has been shown to decline with distance to forest58, with seeds of 
more than 60% of tree species in warm-temperate forests of Japan 
dispersed by forest-dwelling birds59. We speculate that these positive 
effects will extend to closed-canopy plantations in other temperate 
regions where light availability is the most limiting resource for 
understorey plants, but caution that the positive effect of thinning 
will probably not extend to older plantations with more complex age 
structures and open canopies, that is, to stands with forest floors that 
are not light-limited, or to stands in regions with high densities of 
deer (Cervus japonicus) that limit regeneration60, or where thinning 
is known to enhance single-species dominance or invasive species 
establishment (for example, giant bamboo (Phyllostachys sp.) in 
warm-temperate Japan)61.
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Left: effect sizes representing the effects of plantation thinning 
on abundance of saplings depend on thinning intensity, showing 
grey‐shaded 95% confidence intervals in the regression based 
on between‐study and within-study uncertainty; values above 
the horizontal dashed line signify higher abundance in thinned 
than unthinned stands. Point colour and shape combinations 
correspond to study identifiers, while point size is proportional 

to estimated weights. Middle: spatial distribution of study sites in 
Japan. Right: distribution of studies in parameter space according 
to mean annual rainfall and elevation. Coloured study locations 
are overlain on parameter space occupied by plots dominated 
by sugi or hinoki surveyed in a national forest inventory56 (grey 
shading corresponds to plot density; see Appendix S2 in the 
Supplementary Information for details).
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Pathways to generality with ecological synthesis
We have demonstrated that ecology currently lacks frameworks with 
which to generalize or transfer estimands from quantitative synthe-
ses. Generalization is rarely achievable given that samples are typi-
cally non-random and heterogeneous in ecology50. In this section, we 
propose three actions that can be taken immediately by ecologists to 
facilitate greater nuance in communicating the transferability of the 
estimands. We then detail four urgent research agendas required to 
improve the validity of estimand transfers.

Three actions for communicating the transferability of 
estimands
Action 1: Define the estimands and target contexts in a ‘Constraints 
on generality’ statement. Psychology researchers have called for 
journals to require ‘Constraints on generality’ (CoG) statements in the 
discussion sections of empirical articles, encouraging authors to draw 
conservative inferences, rather than make broad generalizations about 
undefined or ill-defined target contexts. CoG statements describe and 
justify target contexts, and specify assumptions the authors consider 
necessary for the estimand to validly transfer to other contexts51,52. They 
discourage exaggerated generality claims. CoG statements function 

to help both researchers and readers transfer estimands to specific 
target contexts. We provide an example in Box 2.

A CoG statement can explicitly define the estimand to be trans-
ferred, the target context and any boundary conditions to which find-
ings can be confidently applied, distinguishing between so-called 
‘known’ and ‘speculative’ inferences51. Context parameterization might 
be quantitative (for example, stating climatic, edaphic and topographic 
ranges) or qualitative (for example, insects in coniferous forests of 
central Japan, but not all animals over the globe). Variables include 
those that might alter the importance of a mechanism through which 
a causal effect operates53. Context parameterization permits both 
researchers and readers to implement what social scientists term the 
‘proximal similarity model’ sensu Campbell 198654. This model involves 
conceptualization of potential target contexts as a gradient of similar-
ity, from most closely similar to least similar. Proximal similarity sup-
ports transferability to those populations that are spatially, temporally 
and taxonomically most alike (that is, most proximally similar to) those 
in the focal study13.

Researchers could make statements about the predicted estimand 
in a specific target context, for example, the magnitude and sign of an 
effect on a specified outcome, and how estimands might change along 
a given gradient under specified conditions, and state whether the 
target gradient extends beyond the range of the reference population’s 
parameter space. Researchers could articulate assumptions underly-
ing the predictions (for example, what conditions must hold, such as 
site historical factors), as well as potential ecological and/or societal 
impacts of an assumption being violated.

We see an opportunity for reviewers to be involved in improving 
CoG statements. If the onus is only on authors to specify generality, 
these statements risk being arbitrarily subjective and marginalized to 
a perfunctory ‘limitations’ section. Reviewers could serve two roles in 
this regard. First, at the stage of submitting their evaluation, reviewers 
could be asked a short-response question about what they perceive the 
generalizability and transferability of the empirical findings to be. If the 
statements of the authors and reviewers diverge notably, this would 
indicate to the editor a lack of clarity in the manuscript about general-
ity or necessary context. For journals that provide peer-review reports 
alongside published papers, the reviewers’ perceptions of generality 
could provide additional insights to readers. Second, reviewers can 
serve a role, again through a short-response question, in discourag-
ing authors from exaggerating generality, especially in the title and 
abstract.

Action 2: Move beyond static representations of ecological rela-
tionships. Researchers could work harder to meaningfully commu-
nicate contingency, uncertainty and transferability of estimands to 
different audiences, including researchers and practitioners. In both 
primary and synthetic studies, the usual current practice is to display 
outputs of analyses as two-dimensional static plots, typically holding 
other covariates at their mean values62. Given the conditional character 
of ecological relationships, estimated using nonlinear link functions 
and linear models with interaction terms, such two-dimensional plots 
are often ineffective at displaying the range and variability of esti-
mands63. Possible alternatives include interactive graphics that enable 
readers to explore underlying data points from full-data syntheses, 
and the prediction of marginal effects for user-specified covariate 
values (for example, ref. 64). For example, a recent study65 produced an 
interactive web application to help psychology researchers visualize 
interaction effects and communicate the statistical integrity of analyses 
(https://connorjmccabe.shinyapps.io/interactive/). For meta-analysis, 
‘dynamic meta-analysis’ software has been developed, whereby effect 
sizes can be filtered and weighted, and results can be recalculated, 
using subgroup analysis, meta-regression and recalibration66, which 
could be extended to alternative weighting schemes that incorporate 
generality criteria31,67. EviAtlas is an example of open source software 
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for example, the internal validity of reference study design and mechanistic
understanding of the study system

Compare variable distributions 
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Selected variables are those that 
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For example, reweighting methods.   
    

Measure the accuracy of the estimate using independent data from,
for example, field data, simuations or expert knowledge.

5. Apply quantitative methods:

6. Validate transfer of estimand: 

Fig. 2 | Transferring an estimand to a target context. A schematic illustrating 
the six steps involved in transferring an estimand to a target context.
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for producing interactive visualizations of systematic map databases68. 
These applications could be embedded within online publications, 
which increasingly support interactive graphics and code69,70.

Action 3: Quantify the ‘transfer domain’ for full-data syntheses. In 
addition to quantitative context parameterization (action 1), research-
ers could identify the ‘transfer domain’ that delineates the parameter 
space to which effect sizes can be validly transferred (given CoG state-
ments and assumptions), also known as the ‘applicability domain’, in 
predictive modelling across disciplines including chemistry71, material 

science72 and environmental science73. For full-data syntheses of large 
datasets, cross-validation techniques could be used, wherein model 
parameters are estimated using 90% of the primary studies (training 
set) and model predictive performance evaluated using the remaining 
10% (test set). After repeating on different combinations of primary 
studies in training and test sets, studies for which effect sizes are not 
predicted well would be considered outside of the transfer domain. To 
identify the boundary conditions, one could identify the characteris-
tics of studies that are unpredictable. Employing cross-validation for 
meta-analysis will change the focus from the most precise estimate 
and its statistical significance to how well estimands transfer to dif-
ferent contexts.

Four agendas for developing a science of 
generality applicable to synthesis
Here, we propose four research agendas to guide the development 
of both quantitative and qualitative assumptions that underpin the 
generalizability and transferability of estimands for scientists and 
policymakers. We identify six key steps (Fig. 2) that could help to for-
malize the assumptions that underpin transfer of estimands to specific 
contexts in ecology74.

Develop qualitative and quantitative criteria with which to 
evaluate transferability of an estimand (for scientists)
After specifying an estimand for a target context of interest (Fig. 2, steps 
1 and 2), researchers could develop qualitative criteria or quantitative 
indicators with which to appraise the transferability, or assumptions 
that (if met) justify the transfer of an estimand of interest (step 3). These 
criteria can be used to enhance CoG statements (action 1) and guide the 
appraisal of primary studies that are used in quantitative syntheses. 
Criteria could comprise descriptors of dissimilarity between the refer-
ence and target contexts (their covariate distributions), study-design 
attributes (for example, replication, spatial interspersion), analytical 
design attributes (for example, model complexity, statistical match-
ing), modelling choice (for example, machine learning) and the mech-
anistic nature of the causal relationships. Ideally, these criteria and 
assumptions would be identified at the beginning of a study, to guide its 
design, rather than at the end75. While high-level categories of appraisal 
criteria are likely to be useful to guide the analysis and interpretation 
of primary and synthetic studies, exact criteria will be specific to the 
ecological question and estimand of interest.

Health disciplines have developed objective criteria with which 
to judge the external validity of primary studies for a defined target 
context, for example refs. 76–78. For instance, the Population–Interven-
tion–Environment–Transfer Model of Transferability helps different 
audiences to judge the transferability of a health intervention, accord-
ing to characteristics of the studied population (socio-demographic, 
attitudinal), intervention (internal validity of study), environment 
(public perception, climate) and transfer (feasibility of intervention)77. 
These have been recently extended to syntheses75,79. For example, the 
‘Transfer approach’75 supports collaboration between researchers 
and stakeholders during the review process to systematically and 
transparently consider factors that may influence the transferability 
of medical systematic review findings. To support the identification 
of important contextual variables with which to define reference and 
target contexts and evaluate the validity of potential transfers, the 
use of ‘selection diagrams’ can help identify important condition-
ing variables and study-design attributes that might influence the 
transferability of causal effects. Two previous studies74,80 proposed 
the use of these graphical representations of causal relationships, 
which formally articulate commonalities and differences in the form 
of unobserved factors capable of causing differences in causal effects 
between reference and target contexts. This approach is a useful 
tool for identifying important conditioning covariates and detailing 
the assumptions and tests that are required to develop qualitative 

Box 3

Selection diagram approach for 
identifying contextual variables 
and assumptions, and transport 
formulae to enable transfer of 
an estimand

Selection diagram approach for the effect of forest thinning on 
understorey biodiversity (adapted from ref. 82). In a, we consider 
the problem of transporting experimental results between two 
locations. We have conducted a randomized experiment in a 
location (reference context) to estimate the causal effect of forest 
thinning (treatment X) on understorey biodiversity (outcome Y) for 
every stand age group (Z = z), denoted P(y|do(x),z). We now wish to 
transport the results to forests in another location (target context), 
but we find the distribution P(xyz) to be different from the one in the 
target context (call the latter P*(xyz)). In particular, the average age 
of the trees is significantly lower than that in the reference context. 
How do we estimate the causal effect of X on Y in the target context, 
denoted R = P*(y|do(x),z)?

In b, the selection diagram conveys the assumption that the 
only difference between the two populations is factors determining 
age distributions of trees shown as S → Z, while age-specific effects 
P(y|do(x),Z = z) are invariant across forest contexts. Dashed arcs 
(for example, X⇠ ⇢Y) represent the presence of latent variables 
affecting both X and Y. Under these assumptions, the causal effect 
in the target context, R, can be estimated using a transport formula 

as follows: R = ∑
Z
P∗(y|do (x) , z)P∗ (z) = ∑

Z
P(y|do (x) , z)P∗ (z). 

It combines experimental results obtained in the reference context, 
P(y|do(x),z), with observational aspects of target context, P*z, to 
obtain an experimental claim, P*(y|do(x)), about the target context. 
By formalizing this graphically and formulaically, we are forced to 
define what we must assume about other confounding variables 
besides stand age, both latent and observed, for our formulae to 
have validity.
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indicators and tests of transferability (example in Box 3). See Box 4 
for a Glossary of terms.

Develop quantitative methods to transfer estimands (for 
scientists)
Ecologists could develop methods to transfer estimands to different 
target contexts, once the reference and target contexts have been 
parameterized. A recent study81 reviewed the numerous quantitative 
approaches that have been developed in primarily health-related disci-
plines to: (1) evaluate the validity of transferring an estimand to a speci-
fied target context, based on a set of assumptions (Fig. 2, step 3) and the 
quantitative dissimilarity of the study and target contexts (Fig. 2, step 

4); and (2) use ‘external validity bias adjustment’ methods to adjust an 
estimand for a target context (Fig. 2, step 5). For example, a pair of stud-
ies formalized a range of ‘transport formulae’ associated with selection 
diagrams that enable the recalibration of average population-level effect 
sizes for a well-defined target context, for example, through re-weighting 
observations in the reference population in proportion to distributions 
of conditioning covariates in the target context18,82 (example in Box 2). 
The choice of method for estimand adjustment may be restricted by 
data availability (for example, summary-level versus individual-level 
data) and mechanistic understanding of the target system.

Validation of quantitative transfers (Fig. 2, step 6), and of the meth-
ods developed to enable transfer, will only be possible with independent 

Box 4

Glossary of terms
Accuracy/bias
The distance of an estimate from the value it is estimating, with a 
large distance signifying low accuracy/high bias.

Boundary conditions
The regions of the parameter space that describe a context, within 
which an inference is valid.

Causal inference
An evidence-based conclusion about the causal, driving effect of a 
particular phenomenon.

Effect modification
An effect magnitude and/or direction that varies with the values of 
another effect, and vice versa.

Estimand
The target of estimation, characterized by a response variable of 
interest (for example, species richness), an independent variable 
of interest (for example, forest logging), a summary measure (for 
example, the standardized mean difference in species richness 
between the populations of logged and unlogged stands: [μ1 – 
μ2]/σ), the target population or unit of interest (for example, planted 
forest stands within a national park).

External validity
Here referred to as ‘generality’. The capacity for a sample estimand to 
apply to a specified target population. Two types are distinguished: 
generalizability and transferability.

Generalizability
Concerns the validity of extending an inference about an estimand 
from the sample to the population from which it is drawn. 
Generalizability could be defined as the accuracy of a sample 
estimand, in terms of its difference from the true population estimand.

Internal validity
The degree to which observed covariation between a dependent and 
an independent variable can be interpreted as a causal effect.

Precision
The distribution of replicate estimates around their mean, with a tight 
distribution signifying high precision. In the absence of systematic 
bias, greater precision leads to higher accuracy.

Primary study
A study that gathers new data on a particular population 
(distinguished from a secondary study, such as a synthesis of  
primary studies).

Sampled population
The set of observational units of a distributed variable that define the 
scope of inference of the testable hypotheses. Statistical analyses 
require random and independent sampling from the population 
of interest, which means that the population needs defining at 
the design stage. The outcome of statistical testing (for example, 
detection of a trend) applies to the sampled population, not to 
the sample(s). Thus, confidence intervals around a sample mean 
describe the range of plausible values of the population mean given 
the sample.

Shrinkage
A fundamental property of multilevel models, also  
known as ‘borrowing strength’, wherein individual  
group (for example, study-level) estimates are shrunk  
towards the overall population mean. Data nuances will  
determine the relative amount of strength borrowed per  
study, but in general, shrinkage is a function of the relative  
variance of each estimate, and is greater for groups with  
extreme values and lower replication89. As with weighting in 
meta-analyses of effect sizes, shrinkage functions to reduce the 
variance of cross-study estimates.

Transferability
The validity of extending an inference about an estimand  
to different sampling units or a different population of  
units. Transferability could be defined by the accuracy of  
a predicted estimand for a target population or observation, 
quantified by the difference between the transferred estimand  
and the ‘true’ estimand.

Weighting
Considered a hallmark of formal meta-analysis, the 
precision-weighting of each effect size by the inverse of its variance 
ensures that more precise studies make a larger contribution to 
the meta-estimate. Weighting serves only to increase the precision 
of the meta-estimate and the power of tests, not the accuracy of 
meta-estimation90. In the presence of bias, it can lead to precisely 
wrong estimates30.
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studies and data using cross-validation (action 3), although they are 
often unavailable or insufficient for a target context. Transfer methods 
and understanding need development as a discipline. In the mean-
time, data gaps might be filled by making use of continental scale, 
fine-resolution data from environmental monitoring programmes that 
span multiple environmental contexts, such as the National Science 
Foundation’s National Ecological Observatory Network (https://www.
neonscience.org) and national forest inventories. In the absence of 
validation data for target contexts, transferability could be estimated by 
contrasting predictions with existing expert knowledge, by simulations, 
or by performing controlled, distributed experiments8.

Conduct interdisciplinary research that seeks to understand 
how multiple stakeholders perceive generalizability and 
transferability (for scientists and practitioners)
Scientists need to communicate the transferability, contingency and 
uncertainty of ecological effects in a meaningful and practicable way. 
This requires an understanding of how perceptions of transferability 
and uncertainty are formed by different audiences, including scien-
tists, practitioners and policymakers83,84. Interdisciplinary research is 
required to understand how different attributes affect the perceived 
transferability of ecological effects (using, for example, surveys, work-
shops). These might include: (1) audience attributes (for example, sec-
tor, experience); (2) study context (biogeography, climatic conditions); 
(3) study-design attributes (for example, design, scale, replication); 
and (4) presentation attributes (for example, graphical presentation of 
results). Next, we can use this understanding to determine how uncer-
tainty and contingencies are unambiguously communicated, by trial-
ling different methods of translation, and to improve CoG statements.

Conduct adaptive research that feeds into syntheses (for 
scientists and science funders)
Research funding is usually based on competition between individual 
proposals, with an emphasis on novelty. Distributed experiments have 
become popular in many disciplines85 as an approach that aims at gen-
erality by repeating an experimental design in multiple locations (for 
example, Nutrient Network8, Marine Global Earth Observatory86 and 
ManyLabs in psychology87). In practice, such distributed experiments 
are poorly resourced, depending on freely offered endeavours of dedi-
cated researchers for setup and maintenance. Large-scale, multina-
tional and long-term funding to institutions for collaboration could 
transform this approach, to sample across the range of contextual 
variables as orthogonally as possible. Importantly, the results could 
inform extensions to these studies, or a new set of studies, in accord-
ance with the concept of ‘adaptive experimentation’88. This would lead 
to syntheses that inform transferable research designs in an iterative 
manner, rather than ‘making do’ with what has gone before. This idea 
replaces the current paradigm of individual-level competitiveness and 
novelty with institutional-level collaboration and scope for generality, 
and it provides a framework for individual scientists to develop their 
talents in collaborative teams.
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